贝叶斯优化是一种全球优化未知和昂贵目标的方法。它结合了替代贝叶斯回归模型与采集函数,以决定在哪里评估目标。典型的回归模型是具有固定协方差函数的高斯流程,但是,该过程无法表达事先的输入依赖性信息,特别是有关最佳位置的信息。固定模型的普遍性导致了通过信息丰富的均值功能利用先验信息的共同实践。在本文中,我们强调说,这些模型会导致性能差,尤其是在高维度中。我们提出了新颖的信息协方差函数,以利用非平稳性来编码搜索空间某些区域的偏好,并在优化期间自适应促进局部探索。我们证明,即使在弱的先验信息下,它们也可以在高维度中提高优化的样本效率。
translated by 谷歌翻译
最近介绍基于梯度的MCMC用于离散空间具有巨大的希望,并带来了新离散的可能性的诱人可能性,即MALA和HMC等著名的连续方法。为了实现这一目标,我们介绍了几个在概念上受到MALA启发的分离大都会杂货样本,并在贝叶斯推理和基于能量的建模中表现出了一系列具有挑战性的采样问题。从方法上讲,我们确定了为什么对预处理的MALA的离散类似物通常是棘手的,激发了我们基于辅助变量和“高斯整体技巧”引入一种新型的预处理。
translated by 谷歌翻译
这是机器学习中(主要是)笔和纸练习的集合。练习在以下主题上:线性代数,优化,定向图形模型,无向图形模型,图形模型的表达能力,因子图和消息传递,隐藏马尔可夫模型的推断,基于模型的学习(包括ICA和非正态模型),采样和蒙特卡洛整合以及变异推断。
translated by 谷歌翻译
统计模型是机器学习的核心,具有广泛适用性,跨各种下游任务。模型通常由通过最大似然估计从数据估计的自由参数控制。但是,当面对现实世界数据集时,许多模型运行到一个关键问题:它们是在完全观察到的数据方面配制的,而在实践中,数据集会困扰缺失数据。来自不完整数据的统计模型估计理论在概念上类似于潜在变量模型的估计,其中存在强大的工具,例如变分推理(VI)。然而,与标准潜在变量模型相比,具有不完整数据的参数估计通常需要估计缺失变量的指数 - 许多条件分布,因此使标准的VI方法是棘手的。通过引入变分Gibbs推理(VGI),是一种新的通用方法来解决这个差距,以估计来自不完整数据的统计模型参数。我们在一组合成和实际估算任务上验证VGI,从不完整的数据中估算重要的机器学习模型,VAE和标准化流程。拟议的方法,同时通用,实现比现有的特定模型特定估计方法竞争或更好的性能。
translated by 谷歌翻译
我们引入隐深自适应设计(iDAD),在实时与隐性模型进行适应性实验的新方法。iDAD通过学习设计政策网络的前期,然后可以在实验时快速部署摊销贝叶斯优化实验设计(BOED)的成本。该iDAD网络可以在其模拟微样品,不同于需要一个封闭的形式可能性和条件独立实验以前的设计政策工作的任何模型进行训练。在部署时,iDAD允许以毫秒为单位进行设计决策,而相比之下,需要实验本身期间繁重的计算传统BOED方法。我们说明了多项实验iDAD的适用性,并表明它提供了与隐式模型进行适应性设计一个快速和有效的机制。
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
We present a dynamic path planning algorithm to navigate an amphibious rotor craft through a concave time-invariant obstacle field while attempting to minimize energy usage. We create a nonlinear quaternion state model that represents the rotor craft dynamics above and below the water. The 6 degree of freedom dynamics used within a layered architecture to generate motion paths for the vehicle to follow and the required control inputs. The rotor craft has a 3 dimensional map of its surroundings that is updated via limited range onboard sensor readings within the current medium (air or water). Path planning is done via PRM and D* Lite.
translated by 谷歌翻译
While the capabilities of autonomous systems have been steadily improving in recent years, these systems still struggle to rapidly explore previously unknown environments without the aid of GPS-assisted navigation. The DARPA Subterranean (SubT) Challenge aimed to fast track the development of autonomous exploration systems by evaluating their performance in real-world underground search-and-rescue scenarios. Subterranean environments present a plethora of challenges for robotic systems, such as limited communications, complex topology, visually-degraded sensing, and harsh terrain. The presented solution enables long-term autonomy with minimal human supervision by combining a powerful and independent single-agent autonomy stack, with higher level mission management operating over a flexible mesh network. The autonomy suite deployed on quadruped and wheeled robots was fully independent, freeing the human supervision to loosely supervise the mission and make high-impact strategic decisions. We also discuss lessons learned from fielding our system at the SubT Final Event, relating to vehicle versatility, system adaptability, and re-configurable communications.
translated by 谷歌翻译
We present Muse, a text-to-image Transformer model that achieves state-of-the-art image generation performance while being significantly more efficient than diffusion or autoregressive models. Muse is trained on a masked modeling task in discrete token space: given the text embedding extracted from a pre-trained large language model (LLM), Muse is trained to predict randomly masked image tokens. Compared to pixel-space diffusion models, such as Imagen and DALL-E 2, Muse is significantly more efficient due to the use of discrete tokens and requiring fewer sampling iterations; compared to autoregressive models, such as Parti, Muse is more efficient due to the use of parallel decoding. The use of a pre-trained LLM enables fine-grained language understanding, translating to high-fidelity image generation and the understanding of visual concepts such as objects, their spatial relationships, pose, cardinality etc. Our 900M parameter model achieves a new SOTA on CC3M, with an FID score of 6.06. The Muse 3B parameter model achieves an FID of 7.88 on zero-shot COCO evaluation, along with a CLIP score of 0.32. Muse also directly enables a number of image editing applications without the need to fine-tune or invert the model: inpainting, outpainting, and mask-free editing. More results are available at https://muse-model.github.io
translated by 谷歌翻译
The visual dimension of cities has been a fundamental subject in urban studies, since the pioneering work of scholars such as Sitte, Lynch, Arnheim, and Jacobs. Several decades later, big data and artificial intelligence (AI) are revolutionizing how people move, sense, and interact with cities. This paper reviews the literature on the appearance and function of cities to illustrate how visual information has been used to understand them. A conceptual framework, Urban Visual Intelligence, is introduced to systematically elaborate on how new image data sources and AI techniques are reshaping the way researchers perceive and measure cities, enabling the study of the physical environment and its interactions with socioeconomic environments at various scales. The paper argues that these new approaches enable researchers to revisit the classic urban theories and themes, and potentially help cities create environments that are more in line with human behaviors and aspirations in the digital age.
translated by 谷歌翻译